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1 Introduction

Water infrastructure is widely acknowledged to be in need of repair and reinvestment in

the United States and many other Organization for Economic Co-operation and Development

(OECD) countries.1 Water infrastructure in particular gets a lot of media attention. The 2014

Flint, MI, water crisis is resulting in criminal charges, a main break on the UCLA campus

in 2014 received national media attention, and the traffic impact of water main breaks are

routinely reported by news outlets.2

Because water infrastructure is a public good, determining efficient reinvestment is a public

policy issue sitting with city, county, state and federal governments. Trade groups estimate

the cost of water instrastructure repair to be on the order of $1 trillion dollars over the

next 25 years (AWWA, 2012). To develop efficient policy, its important for policy makers to

understand the expected benefits and expected costs of each investment decision.

Unfortunately, there are no causal estimates for how water supply disruptions impact any

measure of economic welfare for OECD countries to our knowledge.3 As a result, even if

OECD utilities were allocated funds to invest in water infrastructure, there is no empirical

evidence for the economic benefits of different investment options. Although the American

Water Works Association notes, “The need to rebuild... pipe networks must come on top of

other water investment needs, such as the need to replace water treatment plants and storage

tanks, and investments needed to comply with standards for drinking water quality” (AWWA,

2012), there is no clear causal evidence on the direct or indirect economic returns of such an

1The Harvard Business Review and The Economist routinely run stories on crumbling wa-
ter (and road) infrastructures. See https://hbr.org/2015/05/what-it-will-take-to-fix-americas-crumbling-
infrastructure and http://www.economist.com/news/united-states/21605932-country-where-everyone-drives-
america-has-shoddy-roads-bridging-gap.

2See https://www.washingtonpost.com/news/dr-gridlock/wp/2016/06/23/water-main-break-in-
alexandria-likely-to-cause-traffic-delays/.

3There is virtually no work in the economics literature that addresses the causal economic impacts of well-
functioning water infrastructure in OECD countries. Most of the work addressing the causal impacts of water
infrastructure focuses on less-developed countries (e.g., Galiani et al., 2005; Gamper-Rabindran et al., 2010;
Devoto et al., 2012; Bel et al., 2010). Some closer research focuses on estimating a dose-response function of
water pollution on infant health (Currie et al., 2013) and bottled water purchases in response to water quality
violations (Graff Zivin et al., 2011). The majority of the work on water infrastructure in OECD countries,
however, uses computable general equilibrium (CGE) models with parameters taken from the literature (Rose
and Liao, 2005). Although a valuable modeling technique, because the parameter values used are often not
causal it is unclear how much policymakers should prioritize water infrastructure improvements based upon
CGE output.
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investment.

This paper estimates the causal effect of water infrastructure failure on an important

economic outcome—traffic—in a dense, urban OECD city. Water main breaks occur relatively

frequently in an unpredictable fashion and are an ideal example of water infrastructure failure

of pipe networks. When a water main breaks, it is typically repaired by the local utility or

another vendor immediately. The repair often shuts down streets and impacts traffic because

construction crews have to cut through cement and asphalt to repair the broken water main.

We estimate the causal effect of water main breaks on traffic speeds. While there is a healthy

literature examining the impacts of various market events and regulations on traffic and

driving behavior (e.g., Burger and Kaffine, 2009; Anderson, 2014; Bento et al., 2014; Wolff,

2014a,b), there has been no work on the traffic impacts of water main breaks.

We study the universe of all water main breaks over a 12-month period in Washington,

DC, from July 2014 through June 2015. Our data on water main breaks include location of

the break, the severity of the break, and the time at which a break is reported and when

repairs are completed. We merge in high-frequency and spatially detailed traffic speed data

for 2,182 urban road segments in DC. We use a generalized difference-in-difference (DD)

research design by comparing observed traffic speeds on “treated” road segments near a break

to “comparison” road segments further away from the break, in addition to “spillover” road

segments in the middle that may violate our stable-unit treatment value assumption. The

DD research design is important because we find breaks are more likely to occur during lower

traffic speed days (e.g., when it is colder and mains are more likely to break).

Because there are substantial differences in road types in our data set, it is unclear which

road segments serve as good counterfactuals for a treated road segment when there is a water

main break. In our data, individual road segments have unique IDs, traffic direction and

traffic speeds. This can create problems in selecting comparison road segments for segments

that are “treated” with a water main break. For example, we have interstate road segments,

within-city arterial roads, and non-arterial roads in our data. The location and direction

of each road segment determines which road segments are susceptible to morning commute
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versus afternoon commute traffic. With non-descriptive identifiers we run the risk of having

dissimilar road segments serve as control for treated segments.4

There are some methods available to applied econometricians and statisticians to use

a data-driven approach to pick appropriate counterfactuals. Researchers sometimes hand-

select comparison groups to include “like” observations (Bento et al., 2014) or samples are

trimmed so that units have similar support (Ferraro and Miranda, 2017). Hand trimming,

though, is ad hoc and not algorithmic; it requires the researcher to decide what appropriate

variable cutoffs are. Synthetic control techniques are increasingly used to estimate unit-specific

treatment effects using panel data algorithmically (Abadie et al., 2010; Quistorff, 2017; Xu,

2017). While appealing, synthetic controls have both complicated standard error calculations

and are computationally intensive, especially as the number of units increases.

In this paper we leverage k-means clustering as a simple technique to select comparison

groups algorithmically as in Bonhomme et al. (2017) and Aliprantis et al. (2017). k-means

clustering involves pre-processing panel data using an unsupervised machine-learning algo-

rithm to classify similar units based upon levels and summary statistics of observed variables

in the dataset. While k-means clustering has been used in the economics literature previously

for classification (e.g., Crone, 2005; Caballero, 2016; Castledine et al., 2014) it has not been

used to create matched clusters in a program evaluation context before our work and Bon-

homme et al. (2017) and Aliprantis et al. (2017). Observations within the same cluster are

most similar to one another on observable margins, and are thus likely balanced on unobserv-

ables in expectation. Pre-processing the data in this way permits estimation of cluster-specific

treatment effects, particularly for a treatment that varies over space and time as in our setting.

One desirable feature of k-means clustering over other techniques is that it can be easily

4This type of data is sometimes called “unstructured panel data” in computer science. Examples of un-
structured large panel datasets include website browsing data, product use data, and anonymized healthcare
use data where the types of outcomes common in economics datasets isn’t present. With web browsing data
a company uses cookies to identify specific users and then logs the universe of their click behavior on their
website. For product use data, internet connected devices like thermostats monitor electricity consumption of
households in near real time. Anonymized healthcare analytics track how individuals on different healthcare
programs use healthcare services. One challenge of conducting researching on these types of datasets is that
when a particular subject is treated, it is unclear what the proper counterfactual ought to be. Put another way,
an infrequent healthcare service user is probably a poor control for an intense health care user, in particular if
treatment could have heterogeneous treatment effects.
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applied within quasi-experimental research designs like difference-in-differences estimators as

we do here, in addition to experimental variation. Thus, our use of k-means clustering adopts

an algorithmic approach to traditional econometric pre-processing that allows for estimat-

ing cluster-specific treatment effects. Our method is distinct from alternative algorithmic

approaches in Athey and Imbens (2016) and Wager and Athey (2017). Those approaches

leverage supervised ML algorithms to hunt for heterogeneous treatment effects along well-

defined covariates in the data. By contrast, our approach creates categorical variables called

“clusters” for which we explicitly estimate unique treatment effects.

We pre-process our data set using k-means clustering to classify similar road types into

clusters based upon observed traffic speed levels, variance, changes, and directions of traffic on

each segment for different hours of the day. We present evidence that the clustering algorithm

removes interstate and main thoroughfares as comparison units for small surface streets. We

describe how roads within the same cluster are similar to one another and therefore provide

a more plausible counterfactual outcome. Our identifying assumption is that unobservable

features of segments within a cluster are assumed to be uncorrelated with the timing and

location of water main breaks, so that the error term is uncorrelated with the treatment

variable within clusters. We verify the difference-in-differences pre-trends requirement holds

within a cluster. We also perform a placebo test to provide evidence that conditional on a

break occurring it occurs exogenously within a cluster.

Clustering is important for internal validity in our application. Using a DD design without

clusters, we find that water main breaks are associated with a statistically significant decrease

in traffic speeds (1.4%) in road segment clusters where they occurred. By measuring treatment

effects at the cluster level, however, we find that average traffic speed impacts range between

not statistically different from zero to a significant 5% decrease for different clusters. Hence,

there are meaningful statistical differences across road segment clusters. We also find evidence

of spillovers: traffic speed impacts decrease as distance from the break increases, radiating a

half-mile from the location of a water main break. These results are robust to a variety of

alternative specifications, including: changing the number of clusters, temporal and spatial
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controls, serial correlation of the standard errors, and falsification tests. Lastly, we find

evidence that using road segments within the same cluster but far from main breaks as a

control increases statistical power relative to including the fully pooled set of road segments

as a control.

There is a clear temporal pattern in the traffic impacts of water main breaks across clusters

as well: impacts range from over 5% decreases at morning rush hour down to statistically

insignificant effects during off-peak hours within impacted segments. We take this as evidence,

consistent with Anderson (2014), that accounting for temporal heterogeneity is an important

part of traffic studies. Further, we find that the cross-cluster heterogeneity (e.g., spatial

heterogeneity) is just as important as the intertemporal heterogeneity for water main break

traffic delays. To our knowledge, this is the first algorithmic evidence in the economics

literature for heterogeneity in traffic delays over space as being the same order of magnitude

as heterogeneity over time-of-day for a given type of traffic disruption (e.g., water main

breaks).

Finally, while statistically significant and robust across specifications, the aggregate mag-

nitude of these effects is economically small, even for the road segments and times of day

where it matters most. For the average break in our sample, a central estimate of the private

congestion costs is approximately $1,350 per break. Total costs to drivers over our 12-month

sample were $695,275, or approximately $1 per resident of Washington, DC. To our knowledge,

this is the first causal estimate of water infrastructure supply disruptions on any economic

outcome in an OECD country. Despite widespread media attention to water main breaks,

our results imply that economic losses from traffic congestion due to breaks are not a reason-

able justification for large-scale infrastructure repair during, for example, low traffic periods

at night. Of course, there are other important attributes to consider in a full cost-benefit

analysis, including indirect economic costs due to public, commercial, and residential build-

ings being without water; lost revenue from leaked water; health risks due to water quality

degradation; and direct repair costs. To that end, our paper is a starting point rather than a

decision point for policymakers considering optimal water infrastructure investment policy.
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2 Background

A water main is a pipe that supplies water to residential, commercial, and industrial buildings

in a water supply system. When cities are constructed, water mains are often placed under

city streets with smaller pipes leading into individual buildings. The water in a water main

is pressurized to ensure access for utility customers.

Water main breaks occur due to the combination of pressurized water and pipe failure.

Failure is related to pipe age, but also to sharp changes in temperature that cause the mate-

rial making up the pipe to expand and contract. When a break occurs, “downstream” users

may lose water and there is sometimes an “urban geyser” where the pressurized water breaks

through the ground much like an opened fire hydrant. Much talk about crumbling infrastruc-

ture occurs due to increased likelihood of failure. Additional recent concerns also deal with

securing infrastructure from human threats. In both cases, the infrastructure’s age plays a

critical role (AWWA, 2012).

In our study area the distributed water infrastructure is somewhat old. Table 1 shows the

composition of mains by material and a coarse measure of main age for all water mains that

had a break in the data we were provided by DC Water, the water utility for Washington,

DC, through a Freedom of Information Act (FOIA) request. Almost all DC water mains are

cast iron although 3% of breaks occurred in pipes of “unknown” material.5

More surprising is the age of mains that broke in our sample. We observe 515 breaks

between July 1, 2014, and June 30, 2015; however, we focus on 278 breaks that occurred near

a road in our data set. Of these, roughly 46% of breaks occurred in water mains that were

over 100 years old, and the oldest break was from a main installed before the Civil War, in

1859. Unfortunately, we were not able to obtain the age distribution of the entire water main

system with our FOIA request due to security concerns, so we cannot compare the age of

broken mains relative to the entire water supply system. DC Water reports on its website,

however, that the median age of all water pipes is 79 years, which is similar to the median

5Staff at DC Water noted that there is some incompleteness in the materials records. Rather than the
material actually being unknown, these are likely instances of incomplete recording.
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age in our sample (90 years).6 In the full set of 515 breaks, the median age is 81 years—only

two years older than the population median.

While local utilities are responsible for upkeep of their distributed water infrastructure,

such as water mains and sewage lines, they are also responsible for maintenance and expansion

of centralized water infrastructure. Centralized water infrastructure takes the form of water

intake pipes from water sources, water treatment facilities, and pump houses. In allocating

public money for an optimal portfolio of infrastructure improvements, it is unclear how to

allocate funds across centralized and decentralized projects. There is a separate question

of the impact of disruptions on centralized water infrastructure. In this paper, we do not

address disruptions to centralized water infrastructure or any other type of infrastructure

(e.g., transportation or electricity) that local and regional governments must address.

In the interests of tractability and precision, we focus on a single outcome that is affected

by distributed water infrastructure: the effect of water main breaks on traffic. For ba water

main break there are other important outcomes that should be addressed in any complete cost-

benefit analysis. For example, in many cities commercial buildings must be closed if they do

not have access to drinking water. However, knowing precisely which buildings were impacted

by a water main shutdown requires more detailed information than we have. Our research

design and results, though, could be extended to this important economic impact in future

work. As a result, we focus on estimating an accurate effect of water main breaks on traffic

speeds as a first step in informing the larger policy question of optimal water infrastructure

investment.

3 Empirical methodology

To estimate the causal impacts of water main breaks on traffic congestion we combine unique

data sets covering the Washington, DC, area. We then use a machine learning algorithm to

cluster road segments into groups that are observationally similar. Finally, we use a flexible

difference-in-difference design to test whether traffic is affected by main breaks and whether

6https://www.dcwater.com/about/rates/default.cfm.
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this effect diffuses over space. This section summarizes each of the steps in detail.

3.1 Data

We purchased traffic data from INRIX, a company that aggregates high frequency and fine

granularity traffic speed data, for Washington, DC, covering July 1, 2014–June 30, 2015.7

INRIX collects data by partnering with commercial and government agencies to place GPS

based speed sensors in cars then aggregates readings using their own proprietary algorithm

to provide segment by minute speeds. We have speed data in miles per hour (MPH) at

one-minute intervals on each day in our study period, for 2,182 individual road segments

in Washington, DC. Similar data are commonly used in the economics literature for a wide

variety of traffic topics (Burger and Kaffine, 2009; Anderson, 2014; Bento et al., 2014; Wolff,

2014a,b; Hamilton and Wichman, 2018). Included in the set of road segment characteristics

are the latitude and longitude points to identify road segment location, the direction of traffic

flow, and the reference speed for the road. A road segment is typically around 0.25 miles

in length and ranges from a small city street to an interstate highway; these segments, ge-

ographically indexed by their midpoint, serve as the unit of observation in our application.

For tractability in our analysis, we use hourly averages of speed for each road segment and

we drop observations on weekends and those outside of the 5AM–11PM time frame. As such,

we have 8,956,589 individual hour-by-road-segment observations. Unlike Bento et al. (2013)

and Anderson (2014), for example, who use traffic flow and delay data from the California

Freeway Performance Measurement System (PeMS), we require data that is more finely dis-

aggregated on a spatial scale to identify the impact of water main breaks within urban areas.

The primary limitation of these data, however, is that the sole time-varying metric we have on

traffic patterns is speed, which does not capture important characteristics such as the number

of vehicles on the road.

DC Water provided us with a list of water main breaks in response to a FOIA request,

including the intersections or addresses of the breaks that occurred during the time period of

our traffic data. These data include the date of reporting the water main break and the time

7See http://inrix.com/.
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of completion of work. We geo-referenced the locations (i.e., the street intersection or street

address) of main breaks using Google Maps’ API.8

We merge the two data sets—INRIX and DC Water—using latitude and longitude coor-

dinates. The merged data are shown in Figure 1 with points representing water main breaks

and lines representing streets with observed speed data. Because the geographic locations of

water main breaks do not overlap perfectly with road segment midpoints, we assign a water

main break to each road segment within a fixed distance from the break. We then let this

distance vary by econometric specification as discussed below.

The main limitation of our water main break data is that there is no information on

when work actually began for each water main break. We observe when DC Water reports

a repair completed and we observe when a problem is reported. If, however, there is a lapse

in work during which there is no construction, that lapse will count as a “treated” period

even though traffic could be flowing normally, leading to a lower bound for our estimated

average treatment effects. We solve this errors-in-variables problem in several ways. First, we

interpolate repair times for breaks that are implausibly long by replacing their repair times

with the median repair times of breaks denoted as “most severe.” This approach is motivated

by severe breaks being prioritized so that their repairs garner the most immediate use of

resources. Additionally, we include specifications that define a repair time as the lesser of (a)

the difference between the time of a reported break and its completion and (b) one week from

reported completion to provide a lower bound for traffic speed impacts.

3.2 k-means clustering

Our INRIX traffic data contain speeds for both surface streets and highways in DC. In our

sample, there are several types of surface streets, including arteries and smaller residential

streets that have commuter traffic and those without, and so forth. With 2,182 individual

road segments, we adopt a method for classifying observationally similar streets together to

provide the best possible counterfactual outcome for a road segment that is affected by a

8In Appendix Table A.1, we list water main break summary statistics. There are 278 total breaks in the
data. Recall, though, that one break often impacts multiple road segments so there are 515 times a water main
break impacts a road segment our data.
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water main break.

In order to construct a measure of observationally similar streets from a time series of

speed data for each road segment, there are two tasks. The first is to use the time series data

to summarize the important characteristics of traffic patterns. The second is to use a method

of classification based upon these summary statistics. We create a set of 52 summary statistics

to characterize streets using the year’s worth of data. These include mean speed by hour,

standard deviation of speed by hour, difference between maximum observed hourly mean and

mean speeds during commuting hours (to measure congestion), and categorical variables for

traffic direction.9

Classifying road segments is a unique challenge for this paper. Our approach is similar

in spirit to using propensity-score matching to construct a comparison group from observable

characteristics (Rosenbaum and Rubin, 1985). Economists traditionally approach classifi-

cation in this context by matching treatment and control units on the probability of being

treated (Rosenbaum and Rubin, 1983) or based on similarities in covariates (Ferraro and

Miranda, 2017; Wichman and Ferraro, 2017). Our situation is fundamentally different be-

cause we do not have a constant treatment and control group throughout the study. That

is, we need to construct a cluster of road segments that will “turn on” as controls when a

road segment in that cluster is affected by a main break, and turn off when traffic is flowing

normally within the cluster. Otherwise we could be comparing interstate speeds to surface

street speeds, because both are present in our data. As a result, we require a tool to classify

roads with no a priori information about the correct groups. Similar challenges exist for in

other settings, like stores classifying customer types to construct optimal price discrimination

menus (e.g., what features should they stratify customers along, how to weight those features

and where to draw boundaries between groups based upon the features).

9Specifically, from our hour-by-segment level traffic speed data, we drop all observations that occurred before
5AM, after 10PM, or on Saturday or Sunday. We then aggregate the data to a segment level and generate
variables giving the mean and standard deviation of speed over the entire year of data, with one variable for
each hour of the day (i.e., annual mean and standard deviation of speed for the hour beginning at 5AM, 6AM,
..., 10PM). We also construct the difference in means for several peak hours relative to a baseline hour with
minimal traffic (5AM–6AM). Lastly, using the road segment characteristics provided to us by INRIX, we create
dummy variables for cardinal directions (NB, SB, EB, WB, clockwise, and counterclockwise) and highways
(one variable indicating whether a road is an interstate, another for US routes). There are 52 total variables
in the clustering matrix.
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Fortunately there is a set of tools used in machine learning for exactly this problem:

unsupervised learning algorithms.10 We use a simple unsupervised learning algorithm—k-

means clustering—which is a statistical method used to group a set of objects based on

characteristic variables. This approach classifies N objects in an I-dimensional space into K

clusters, choosing to minimize the Euclidean distance between an object’s vector and a cluster

center (the mean of all vectors in the group) (MacQueen, 1967). K, the number of clusters,

and I, the set of clustering variables, are chosen by the researcher.

k-means clustering minimizes the within-cluster sum of squares, using the Euclidean dis-

tance within a cluster weighting each of the I dimensions equally,

∑
k∈K

∑
i∈I
||xi − x̄ki ||2, (1)

where xi is a vector of the ith variable and x̄ki is the mean of the ith variable in cluster k. As

with all machine learning classification algorithms, the precise form of the algorithm defines

what k-means clustering is. The algorithm begins by assigning K group centers to random

points.11,12 Then, it iterates as follows:

1. Assignment step: Each data point is assigned to the nearest group center.

2. Update step: Group centers are adjusted to match the sample means (i.e., centroid) of

the data points.

10Unsupervised learning is a term used in data science to put structure on data when there is no left-hand-side
variable of interest.

11k-means clustering has several limitations. One is that the random assignment of starting points can lead
to very different clusters based on where the initial placement is (i.e., multiple local maxima). One solution is
to repeat the process many times and pick the result with the smallest squared error or, in the case of several
with the same squared error, use some sort of average. Bernhardt and Robinson (2007) use multiple iterations
and note the importance of doing this for clustering a large number of objects together. Another limitation
is that k-means clustering does not consider the shape and distribution of the data. As a result, it is up to
the researcher to provide the appropriate summary statistics to use for classification. A third limitation is the
“hard” design of k-means clustering. Points are assigned to exactly one cluster, including border points that
influence (and are influenced by) points in nearby clusters. This limitation spawned a second type of k-means
algorithm known as “soft” or “fuzzy” clustering. This returns a membership degree for each cluster-object
pair (Rezankova, 2014). While these aspects of clustering are largely beyond the scope of our application, our
results are remarkably robust to various sensitivity tests in clustering.

12As a sensitivity test, we also apply k-median clustering to our data. k-median clustering is similar to
k-means, but uses the 1-norm distance instead of Euclidean distance to assign objects to clusters (Anderson
et al., 2006). Primary results for this approach are included in the Appendix Table A.6
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3. Repeat (1) and (2) until the assignments do not change.

The k-means algorithm will continue to run until each observation is located in a cluster

with other observations that have similar elements to the clustering variables I. Because

simple Euclidean distance will overweight variables with larger nominal values, we standardize

our clustering variables to weight each variable equally. We adopt the method recommended

by Milligan and Cooper (1988), which is to create x̂j = xj/(max(xj) −min(xj)) where xj is

the jth variable.

Figure 2 shows the results of the k-means clustering procedure with K = 10. We choose 10

road clusters to allow for two (incoming and outflowing traffic) interstate roads, main surface

streets, small surface streets, peripheral streets, and “other.” In Figure 2, each road segment

included in a panel is part of the cluster in that panel. The algorithm does well at matching

similar road segments from visual inspection. K = 10 is our preferred number of clusters, but

results are robust to other number of clusters. Primary results for K = 8, 15 are presented in

Appendix Tables A.7 and A.8.

Table 2 shows summary statistics of clusters selected by the k-means algorithm. There are

four clusters (5, 7, 8, and 10) containing many road segments and six smaller clusters. The

larger clusters have lower average traffic speeds, suggesting that we have more observations

on roads with more traffic. Additionally, the k-means clustering effectively groups streets by

direction of traffic and along surface-highway delineations. Similarities in the variables within

a row and differences across rows imply that the algorithm did an adequate job of clustering.

While we are one of the first papers to use k-means clustering to estimate heterogeneous

treatment effects, there is a growing need for tools like these in other contexts due to in-

creased availability of unstructured large panel datasets. Four examples are website browsing

data, product use data, anonymized healthcare use data, and traffic data. With web browsing

data, a company uses cookies to identify specific users and then logs the universe of their click

behavior on their website. For product use data, internet-connected devices like thermostats

monitor electricity consumption of households in near real time. Anonymized healthcare an-

alytics track how individuals on different healthcare programs use healthcare services. Traffic
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data records traffic speeds and flows are different locations over time. Thus we expect this

technique and others like it to become more prevalent moving forward as new research develops

k-means clustering methodology for estimating heterogeneous treatment effects (Bonhomme

et al., 2017; Aliprantis et al., 2017).

3.3 Treatment effects over space and time

Now that we have grouped road segments into similar clusters, we can use this classification

to inform our identification strategy. Let Yit be the outcome variable of interest—traffic speed

on road segment i at time t. The unit of observation for speed is the road-segment level, as

defined by our INRIX data. Road segments are assigned to a cluster j based on our k-means

algorithm.

We are interested in identifying the effect of a series of exogenous water main breaks on

nearby traffic patterns. Since water main breaks vary over space and time throughout our

sample, we assign treatment status, Tit ∈ {0, 1}, to any road segment within ω1 = 0.15 mile

of a water main break during the time period when our data indicate the presence of a water

main break. Although this distance choice is admittedly arbitrary, we choose 0.15 mile as

a distance that will capture the immediate effect of a water main break and also provide

sufficient power to identify effects on congestion. Results are robust to varying this threshold,

though estimated effects decrease in absolute value monotonically as this bandwidth increases,

consistent with attenuation bias. We also define a cluster indicator, Ci = j, for road segments

that are beyond ω1 + ω2 = 0.5 mile from the water main break, but are within the same

jth cluster as any treated road segment. After grouping segments by k-means clustering,

we contend that the control road segments are observationally similar to the treated road

segments, conditional on segment (αi) and time (τt) fixed effects. We can write this formally

in the potential outcomes framework,

E[Y 0
it |αi, τt, Ci = j, Tit = 1] = E[Y 0

it |αi, τt, Ci = j, Tit = 0], (2)

where Y 0
it is the potential outcome in the absence of treatment. The previous equation asserts
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that the potential outcomes for observations in the same cluster as a treated segment (Ci = j)

provide a proper counterfactual for the unobserved term, E[Y 0
it |αi, τt, Ci = j, Tit = 1].

Using the clustered control group in a generalized difference-in-difference framework, we

can then estimate the average treatment effect on the treated (ATT), defined as

ATT = E[Y 1
it − Y 0

it |αi, τt, Tit = 1]. (3)

Because water main breaks are conditionally exogenous to our outcome variable, and thus

our cluster indicator, we contend that the marginal effect of a water main break on affected

road segments, relative to prevailing traffic patterns in the same cluster, is causal. Equation

3 identifies a global treatment effect, although heterogeneous treatment effects are facilitated

simply by conditioning on the cluster. Thus, the cluster-j ATT is simply

ATTj = E[Y 1
it − Y 0

it |αi, τt, Ci = j, Tit = 1]. (4)

There are a few important assumptions required for our heterogeneous treatment effects to

be valid and the treatment effects themselves to be causal. First, for our heterogeneous treat-

ment effects to be valid we use only features characterizing the distribution of road segment

traffic speeds during hours when there is no reported water main break to perform clustering.

This type of “sample splitting” implies that there should be no bias in the treatment effects

due to the clustering algorithm itself.13 Second, the k-means clustering serves as a form of

sample trimming. The trimming, however, is performed in a transparent algorithmic way

so that like units specified by the algorithm are compared to other like units. All units not

contained within a given cluster are excluded fully as in other sample trimming techniques.

Here, the features used for clustering are generated based on the characteristics of relatively

unstructured traffic data rather than well-defined sociodemographic data used traditionally

by economists.

13A more general sample splitting approach would use only half the data to perform the clustering, then the
other half of the data to estimate the treatment effects such as the Causal Forest technique and others common
in the ML causal inference literature. That technique is a very straightforward extension of this approach.
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For causality we require conditional exogeneity, as stated above. Conditional exogeneity

is likely to hold in our context: deviations from average traffic speeds is unlikely to cause

water main breaks. Water main breaks are a function of water main ages, temperatures, and

random (from the econometrician’s perspective) mechanical failures. We also note that the

stable unit treatment value assumption (SUTVA) plays an important role in our analysis.

Given the natural spatial correlation of traffic patterns in a dense, urban road network, it is

likely that the effect of a water main break at a given point may spill over into nearby road

segments and contaminate the control group. As a result, we engage in a trimming proce-

dure discussed at length below to remove contaminated control road segments in addition to

explicitly modeling spillovers using a pragmatic semi-parametric technique and thus preserve

the SUTVA assumption even with an interconnection road network.

In Figure 3, we present a simplified diagram of our treatment assignment to highlight the

spatial dimension of our analysis. If a water main break occurs at the point in the center of

the diagram, we treat all road segments in the circle A (within ω1 miles from the water main

break) as treated. As shown, the markers # and + in A represent treated road segments

(i.e., C = j, T = 1). All other # and + segments in B and C represent potential comparison

road segments that are in the same cluster as the treated segment (i.e., C = j, T = 0). In the

example shown, the marker ? is not treated in A and hence none of its cluster-segments are

considered treated (i.e., C = −j, T = 0).

Using Figure 3 as a reference point, we conduct three complementary econometric analyses

to explore the potential bias arising from treatment spillovers. Specifically, SUTVA is violated

if treatment in A affects the outcome in B. If the correlation between treatment in A and

outcomes in B is positive, as is likely when considering traffic patterns, then the causal effect of

the water main break is likely biased downward. To combat this, we explore this potential bias

directly. First, we estimate a naive model using segments lying in A as treated (C = j, T = 1),

while clustered segments in B and C serve as “controls” (C = j, T = 0). Second, we estimate a

model using road segments in A as treated, and road segments in C (i.e., greater than ω1 +ω2

miles from the water main break) as controls. The treated clusters that lie in B are excluded
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from the set of controls (C = −j, T = 0). Last, we estimate the spillover effect directly by

defining an indicator that corresponds to treated segments that lie in A and another that

corresponds to spillover segments that lie in B, and all segments in C corresponding to a

treated cluster are controls.14

4 Empirical results and discussion

This section reports our main results. We begin with an econometric model that does not

leverage clustering but otherwise shares the same research design. As a result, we first estimate

the average treatment effect of water main breaks on traffic speeds across the entire sample.

We then estimate the same model but allowing for heterogeneous treatment effects across the

algorithmically determined clusters. We proceed in this way to be as explicit and transparent

as possible in how the informational gains from algorithmic clustering can be used to identify

heterogeneous treatment effects. In the Appendix we include a short section which shows

evidence that the DD pre-trends assumption holds within clusters and also discuss it in more

detail below.

4.1 Diff-in-Diff with uniform ATT

We use a research design which allows for water main breaks to have a direct impact on road

segments within 0.15 miles of the main break. Further, we allow a “spillover” impact on

segments between 0.15 and 0.5 miles from the break. Finally, we include an indicator variable

taking the value of one for all hours in which any main break is active. In this specification,

as in subsequent ones, the dependent variable is log of traffic speeds for a given road segment:

ln(speedit) = αi + λt + β · 1{Any breakt}+ γ · 1{Breakit}+ γS · 1{Spilloverit}+ εit (5)

14Table A.2 in the Appendix shows that there is some variation in the number of impacted segments per
break per impacted cluster for a 0.15 mile impact radius. Over 278 breaks there are a total of 12,355 unique
impacted segments within a 0.15 mile radius. The average number of segments impacted per break range from
just over one up to over four. The variability is correlated with the number of segments in a cluster: clusters
with more segments understandably tend to have more impacted segments per break.
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where αi is a road-segment fixed effect and λt is a time fixed effect. In this specification we

define 1{Any breakt} = 1 for each time period within the 12 hours before any break in the

DC Water database is repaired, and zero otherwise. We choose 12 hours because it is the

median repair time for the common type of break in our sample.15 As discussed above and

shown visually in Figure 3, we define a treated segment, Breakit, as any segment within 0.15

mile of the address of a reported break. Thus, for any road segment i within 0.15 miles of a

main break during a period i, 1{Breakit} takes the value of 1. The variable 1{Spilloverit}

is defined similarly for road segments between 0.15 and 0.5 miles of an active break. The

coefficient γ is thus the coefficient of interest in this specification.

Equation (5) and all subsequent regressions are estimated using Cochrane-Orcutt stan-

dard errors (Cochrane and Orcutt, 1949) in an autoregressive panel framework. We leverage

this approach because idiosyncratic variation in hourly traffic speeds within a road segment

are likely correlated. To ensure this solves the serial correlation problem, we test for serial

correlation in the error term using the Bhargava et al. (1982) modified Durbin-Watson error

term and the Baltagi-Wu LBI statistic (Baltagi and Wu, 1999) in all models.

Table 3 shows the results of the econometric model in equation (5). It starts with an

overly simple model with only the indicator variable for hours with main breaks, then adds

road segment and time period fixed effects before reporting results for the full specification

in column (3). Columns (1) and (2) show that, on average, water main breaks occur on days

and hours with slightly higher speeds (approximately 0.76% in column (2)). The key result

is from column (3): the coefficient on road segments from water main breaks is −0.0179 and

it is statistically significant. Spillover segments between 0.15 and 0.5 miles are significantly

impacted at roughly 1/4 the rate of road segments within 0.15 miles (−0.0179 versus −0.0046).

In words, there is a roughly 1.8 log-point decrease in traffic speeds on road segments impacted

by water main breaks when averaged across all road segments.

15There were five types of breaks in the utility’s data and they are sorted ordinally based upon break severity.
Specifically breaks are denoted by 1–5, with 1 being the least severe and 5 the most severe, as well as an
“unreported” category. As shown, the median repair time decreases with the severity of the break which is not
surprising given that utilities don’t arbitrarily resource breaks and often fix most severe breaks first. DC Water
notes, “A simple water main repair can be completed in six to eight hours, but large or complicated repairs
may take several days to a week” (source: https://www.dcwater.com/wastewater/watermain_break.cfm).
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4.2 Diff-in-Diff with cluster-specific ATT

In our next specification, we generalize the model in equation (5) to allow for differential

impact of water main breaks across road segments from different clusters. As discussed above

and shown visually in Figure 3, we define a treated segment, Breakit, as any segment within

0.15 mile of the address of a reported break. We define control segments, Clusterit, as any

segment that is in the same cluster as a treated segment and more than 0.5 mile from a break

during the time of a break. Thus, Clusterit is the k-means analog to the population level

1{Any breakt} in the previous specification. Put another way, when a segment is treated only

segments in its same cluster serve as controls. We also allow for segments in the same cluster

between 0.15 and 0.5 mile from a break to be spillover segments, Spilloverit, during time

periods where a break occurs. We estimate a treatment effect of these segments to determine

any possible diffusion of congestion radiating from a break.

The simplest form of the estimating equation is

ln(speedit) = αi + β · 1{Breakit}+ γ · 1{Clusterit}+ γS · 1{Spilloverit}+ λt + εit (6)

Summarizing the intuition for the regression, for time periods when there are no main breaks

in the data, none of the indicator variables takes the value of one. During time periods

where there is a break within 0.15 miles of a segment i, 1{Breakit} = 1 for that segment.

All segments in the same cluster as segment i have 1{Clusterit} = 1 as would segment i.

Similarly, all segments in the same cluster as segment i and between 0.15 and 0.5 miles of

the break have 1{Spilloverit} = 1. Thus, the coefficient γ describes the average difference in

traffic speeds when a break occurs relative to baseline for impacted clusters. By assumption,

this simple specification imposes that the average speed differential when a water main break

occurs is uniform across clusters. We relax this assumption below. The coefficient γS is

the spillover effect of traffic from a road segment where a break occurs. Our identifying

assumption for causality is that a break occurs exogenously within a cluster, since γ controls

for average speed differences during break hours.
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The coefficient of interest is β, which is the causal impact of a break on traffic speeds,

corresponding to the ATT in Equation 3 relative to road segments in the same cluster but

more than 0.5 miles from a water main break. This simple specification imposes that the ATT

is the same across all clusters; we estimate a more general specification below which allows

heterogeneity across clusters. Thus the key difference between this estimating equation and

the previous one is the set of controls changes to the clusters of any road segments impacted

by a water main break.

Since Equation (6) is a generalized difference-in-difference specification, we briefly discuss

pre-trends in our outcome variable before turning to results. Although the timing of water

main breaks is exogenous, there may be underlying characteristics of the road segments that

are correlated with the likelihood that a water main break occurs. We present a simple

pre-trend analysis in the appendix (Figure A.2) by summarizing the hourly speeds on the

day previous to a water main break in our sample for treatment and control segments. For

six out of our ten clusters, where we observe the majority of our data, pre-trends look like

nearly parallel level shifts and the difference in levels is small. Still, we estimate our main

specifications with road segment fixed effects to eliminate level differences between treated

and control segments.

The results from estimating equation (6) are shown in Table 4. Each column of the table

adds more controls and independent variables until column (4), which has the full model

with controls in equation (6). In each case, the coefficient on 1{Breakit} is the coefficient of

interest and measures the impact of a water main break on road segments. There are two

initialy takeaways. First, the point estimate for the causal impact of water main breaks on

traffic speeds in the complete model in column (4) is a -0.0142 log point reduction, or about

25% smaller than the -0.0179 log point reduction in the equation (5) specification (column 4).

This difference, however, is not statistically different, although a 25% change in a treatment

effect can be quite large in other settings. Second, we also find no evidence of statistically

significant spillover effects. Each of these findings is robust to varying the number of clusters,

as shown in Appendix Tables A.7 and A.8.
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We also estimate equation (6) with cluster-specific treatment effects so that there is a

unique cluster identifier for all 10 clusters interacted with the 1{Breakit} indicator. Table

5 shows those results.16 For clusters 1, 7, and 10 there are statistically significant treat-

ment effects ranging from 1.3% to 3.6% in the final specification. Estimating different point

estimates across segments highlights the value of using clustering to identify heterogeneous

impacts. Recalling that clusters 5, 7, 8, and 10 are the largest clusters in the sample, the lack

of significance in clusters other than 1 is plausibly attributable to power issues rather than a

true zero effect. Clusters 5 and 8 have the expected sign and magnitudes, but are significant

only in columns (1) and (2). In this specification we do not find evidence of nonzero spillover

effects.

4.3 Diff-in-Diff with cluster-specific ATT and cluster-specific controls

Lastly, we estimate equation (6) with both cluster-specific treatment effects and cluster-

specific control indicators. We view this specification as the one that best leverages the

k-means clustering algorithm for identifying heterogeneous treatment effects. That specifica-

tion is:

ln(speedict) = αi +Σcβc ·1{Breakict}+ΣcγC ·1{Clusterict}+γS1{Spilloverit}+λt +εit (7)

In equation (7) we don’t allow the spillover effect to vary across clusters since we view spillovers

as second order and, having estimated a cluster-specific spillover model, their inclusion does

not alter the main findings in a meaningful way. The key difference between this model and the

previous one in Table 5 is that we allow the timing of breaks to be arbitrarily correlated with

sampling variation in the average speed of different clusters (e.g., average speed differences

within a cluster during a treatment event are controlled for). Given that we observe only

515 unique segments impacted by a water main break (sometimes within the same cluster)

sampling variation could be non-trivial. Hence, we view this model as both our most flexible

16Note that Table 5 includes only 2,180 road segments because 2 road segments in our sample have no
identifying characteristics to be used in our clustering algorithm.
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model and our preferred specification.

We report results from equation (7) in Table 6. Compared to results in Table 5, the

two statistically significant and largest in magnitude point estimates decrease with cluster

specific controls. Further, in the full specification (column 4) the number of statistically

significant road segments (at the 10% level) increases from two to six. This finding appears

to be driven by statistically significant heterogeneity in the cluster control variable. We take

this as evidence of increased precision in estimating the treatment effect due to decreased

noise in cluster specific untreated road segment speeds making up the control relative to

untreated road segment speeds across all clusters. Put another way, the power needed to

identify significant treatment effects with lower variation in control outcomes decreases. We

view this as a key benefit to leveraging the clustering algorithm in this type of an applied

setting where there is meaningful heterogeneity across a population.

In both Tables 5 and 6, we observe some cluster types with significantly impacted speeds

due to water main breaks but for some we do not. Applied econometricians historically

use their own priors to determine groups or clusters whereas in this approach we’ve used

an algorithm to do so. Further, the algorithm creates clusters before any causal effects are

estimated. While it might be unsettling to not have priors drive cluster selection for some

practioners, it is far more transparent and data driven. Since it is done separately from

estimation of ATTs, it is also unbiased.

We can also refer back to Table 2 and evaluate the summary statistics of the type of road

segments which have significant negative speed impacts attributable to water main breaks.

They tend to be road segments with the lowest mean speeds (i.e., clusters 1, 7, 8 and 10).

These findings can lead to data-driven theories about why some road segments would be

impacted by water main breaks while other segments would not. For example, road segments

that are already more congested could be impacted the most. Alternatively, small roads

with low speeds could become impassible with a water main break being repaired. We view

algorithmic data driven theory based upon unbiased causal inference to be a good thing for

economics.
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In this section, we found three main econometric artifacts of leveraging k-means to clus-

ter road segments. First, when we allow clusters to serve as controls for road segments as

opposed to all road segments, our point estimate decreased by 25%. Although not an order

of magnitude difference and not statistically different, this effect is still meaningful. Second,

including cluster-specific controls in addition to cluster specific treatment effects increases

statistical power. We attribute this to a reduction in sampling variation when leveling cluster

level identifiers in control road segments. Third, estimating heterogeneous treatment effects

explicitly along with heterogeneous control groups shows significant heterogeneity in causal

effects. Point estimates relative to the simple model not leveraging k-means clustering varies

from more than doubling of the causal effect (cluster 4 at −0.043) to some segments having

no statistically significant impact (clusters 2, 3, 5 and 6). Of course, we only examine a single

economic costs and there are likely to be others to break proximate businesses and residences.

It stands to reason that policymakers in this and other contexts could construct optimal pol-

icy which leverages large heterogeneous impacts like these (e.g., prioritization of repairs for

the types of clusters which have a larger economic cost).

4.4 Robustness checks

Although our results are fairly consistent across specifications, in order to ensure that our

estimates can be attributed to water main breaks we perform several robustness checks.

One challenge of this study is possible measurement error in our treatment identifier. For

severe breaks, which receive the highest priority, the median time between when a break is

reported and when it is repaired is 12 hours (rounded down; see Table A.1). However, the

least severe breaks have median repair times of over 200 hours. This is likely due to lower-

resourced and less timely repair schedules for less “important” breaks. This concern initially

led us to define treatment as the 12 hours before a repair is completed in order to mitigate

the errors-in-variables problem.

As a robustness check, we estimate our main specification using the lesser of (a) the

difference between the time of a reported break and its completion and (b) one week from
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reported completion as the treatment window. Results are in Appendix Table A.3. The

alternate treatment window finds estimated results of −1.9%, relative to that of our primary

treatment definition of −1.4% in the analogous specification above. These estimates, however,

are not statistically different. Given the robustness of our primary result to this alternative

treatment definition, we view this as evidence that our preferred specification is likely to

provide an accurate point estimate.

We estimated the same regression as in equation 6 with severity-level treatment effects,

rather than pooled, to account for the prioritization of DC Water directly. We present this

table in the Appendix (Table A.4) and we find significant point estimates between 1% and 5%

reductions for severity level 1, 2, 3, and 5 breaks. Notably, the treatment effect for severity

5 breaks is statistically similar to our preferred treatment estimate and does not suffer from

small sample problems. Further, it is these breaks that are prioritized to be fixed immediately,

so this result suggests that our preferred estimates are robust to congestion mitigation efforts

by the constructions crews (such as waiting until nighttime, when there is less traffic, to repair

the main).

Lastly, we estimate a placebo test of randomly generated water main breaks. We generate

515 random water main breaks in our sample. We then construct treated and control segments

using the exact same procedure as with reported breaks. Table A.5 reports the results from

estimating our main specification on the placebo data. We repeat the procedure several times,

but report the results from only a single run. In no case do we find a statistically significant

impact of breaks on traffic speeds.17

4.5 Heterogeneous impacts by time of day

Anderson (2014) shows that the impacts of transit infrastructure disruptions vary by time of

day. Intuitively, a disruption is more problematic during high traffic volume periods when

the marginal impact of another commuter is larger. As a result, we estimate both aggregated

and cluster-specific versions of the econometric model restricting the sample to time-of-day

17We also include alternatives to our main specification using k-median clustering in Table A.6, rather than
k-means clustering. In our primary results, we set the number of clusters to 10. In a robustness check, we also
estimate our primary model with k = 8 (Table A.7) and k = 15 (Table A.8).
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bins. Specifically, we break the day into five parts: 7AM–10AM, 10AM–1PM, 1PM–4PM,

4PM–7PM, and 7PM–10PM.

Table 7 shows results for our time-of-day regressions. We find several important patterns

in the data that are robust to alternative specifications. First, the causal impact of breaks

varies throughout the day. Largest impacts are during the morning commute (−3.97%) and

the magnitude of these impacts weaken throughout the day. This result is consistent with

repairs having a higher probability of being fixed by later in the day. To that end, we find a

positive and insignificant impact of treatment on speeds during the afternoon rush hour.

Second, spillovers are much more pronounced when breaking out results by time of day.

In all but one case, the spillover effect is smaller in magnitude than the direct treatment

impact. During the time period when the spillover effect is larger than the treatment effect

(7PM–10PM) the two estimated coefficients are not significantly different. This finding is

consistent with a spatial diffusion of delays with strongest impacts at the point of the water

main break.

Third, having the appropriate control group takes on extra importance in the time-of-

day results. Table A.9 in the Appendix shows results including cluster-specific controls. As

before the coefficients on Break and Spillover are defined as marginal impacts on top of

speeds in the control streets in the same cluster. The table shows statistically significant

heterogeneity in the control cluster speeds by time of day. These results reveal increases in

precision and magnitude of treatment effects by hour of day. We note that spillover impacts

remain unchanged relative to the specification where the average impact of a control period

is assumed to be uniform across clusters.

5 Policy Implications

We find small but statistically significant impacts of water main breaks on traffic speeds.

The impacts range from 0− 5% decreases in traffic speeds in road segments proximate to the

break. These results are robust to a variety of specifications and classification criteria. Our

falsification tests show the estimated effects are driven by main breaks. While traffic patterns
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certainly are correlated to population densities, we show additional heterogeneity conditional

on urban density levels (e.g., across clusters within Washington, DC). The impacts also vary

with time of day and range similarly between 0 − 5%. To our knowledge, this is the first

algorithmic evidence in the economics literature providing evidence that traffic effects which

cause delays can have the same level of heterogeneity over space as they do over time of day.

This insight is useful because it is consistent with managers prioritizing different types of road

segments over others for repair to avoid traffic delays.

The direction of our results is sensible but the magnitudes are somewhat surprising for

two reasons. First, water main breaks are frequently reported by local and national media

outlets. Second, there is a growing acknowledgment that water and other public infrastructure

is deteriorating. Our evidence is consistent with these stylized facts. In our study, however,

we find that the costs of a single type of public infrastructure break is not large for the

single outcome we examine. Changing water infrastructure investment strategies because of

concerns about the effects of water main breaks on indirect economic outcomes (e.g., traffic

delays) seems not to be justified.

To put our estimated treatment effects in context, we approximate welfare impacts of traf-

fic disruptions attributable to water main breaks using both average impacts over the entire

sample and the heterogeneous time-of-day impacts in the spirit of Anderson (2014). To do

so we download daily traffic count data from Washington, DC. The average city street has

roughly 12,500 unique cars travel on it per day.18 Consistent with the Department of Trans-

portation guidelines, we use half the hourly wage rate in the Washington, DC, metropolitan

statistical area (MSA) as reported by the Bureau of Economic Analysis website to value time:

$18.80/hour. Table A.10 in the Appendix shows mean speed by hour of day over all city

streets.19 By using average speed by hour of day, we construct the number of minutes taken

to travel one mile. We can compare average speeds and expected speeds during treated hours

18See http://rtdc.mwcog.opendata.arcgis.com/datasets/fd3a40a7e317420faff13864c7b82bc7_0?

uiTab=table.
19This table also includes mean and standard deviation of the INRIX “score” for the speed data. Score

measures the data quality averaged over an hour. 30 is an actual reading and perfect data, 10 is an interpolated
speed reading. The overall average data quality according to this metric is 26 and data quality is roughly
consistent across our sample.
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to infer the time cost attributable to water main breaks.

We make two simplifying assumptions to make the welfare calculation tractable. First, we

have to determine the total number of miles of street that are subject to the treatment effect

and the spillover effect. To do so, we assume there is a unique street every 0.1 mile since city

blocks are commonly 0.1 mile. We also ignore diagonal arterial streets in DC. This is shown

in Figure 4. Shaded area is considered the treated area and the unshaded counted as spillover.

Each gray line is a single street. In the welfare calculations, we assume the total length of

all streets in the shaded circle of radius 0.15 mile is the length of all treated streets during a

“treated” period. The total street length in the doughnut surrounding the shaded region is

the length of spillover streets. We calculated street lengths using the Pythagorean Theorem

since streets are assumed to be spaced at exactly 0.1 miles and circles are symmetric.

Second, we have to determine how many cars travel on each road segment over a day

and, in the time-of-day calculation, each time period of the day. To do so, we assume each

street has a total of 12,500 cars traveling on it each day. We both assume cars are uniformly

distributed throughout the day and that volumes more than double during rush hours in

different specifications. Because we have no data on volumes by road segment type, we focus

exclusively on temporal heterogeneity since temporal traffic patterns are more well known

than spatial patterns. We take parameter estimates from Tables 5, 8, and 9 to calculate

the time costs. The magnitude of the time costs is similar to that using other parameter

estimates.

Table 8 shows the results of the time costs attributable to water main breaks that occurred

over the 12 months we study. Accounting for temporal heterogeneity rather than simple

average impacts, we find time costs increase by roughly 400%. This result is consistent with

Anderson (2014) who finds the impacts of transit infrastructure disruptions vary by time of

day in a similar way.

Our preferred cost calculation is the bottom one in which we use our estimated time-of-day

effects and assume more traffic occurs during rush hours. In doing so we estimate a time cost

per water main break of roughly $1,350. This works out to roughly $700,000 over the entire
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year. While half or twice this number is possible, we are reasonably confident this is the

correct order of magnitude. Given that the total population of Washington, DC, is roughly

700,000, this works out to roughly $1 per person. In this case $1 per person is almost surely an

overestimate: the time-weighted population of Washington, DC, is much larger than 700,000,

as many people commute into the city from more suburban areas. We do not view this as a

large cost.

The use of these estimates for other urban areas is somewhat plausible, but they probably

do not transfer to less urban areas. Washington is a dense urban area with various alternative

transport options. The metropolitan DC area consistently ranks as one of the most congested

cities, ranking first in annual hours of delay per commuter (Schrank et al., 2015). As a result,

the effect of a water main break on traffic patterns in DC may be small relative to a city

with fewer alternative commuting options, whether those are alternative routes or different

modes of transport. This logic would imply that our results are externally valid for dense

road networks in urban cities and likely a lower bound when fewer substitutes are present.

Despite this, urban areas on average tend to contain older infrastructure that is of critical

policy importance.

6 Policy and Methodological Discussion

Our results do not suggest that infrastructure investment is not important. In fact, the

number of water main breaks, and the corresponding age of the mains, for a single urban

area within our year-long study period is alarming. Rather, we provide evidence that a single

indirect economic cost (increased congestion) from distributed water infrastructure failure is

small. Other direct and indirect effects could be large. That said, if other indirect costs of

failure were small, then centralized water infrastructure improvements could provide more

value than improvements to distributed infrastructure.

It could be that observed failures are not the right measure in this space. Water infras-

tructure investment might be best framed in terms of forgoing the worst possible outcome,

much as electric utilities plan to mitigate blackouts. Low frequency but massive water main
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failures or infrequent large public health disasters are certainly more salient, and they also

may be more important from a benefit cost perspective. In that case, though, we are not

aware of a good economic framework for estimating the impacts of those large, and in some

cases never observed, events.20

More generally, our paper is a starting point rather than a decision point for policymakers

in this space. There is a gap in the literature in identifying causal impacts of water infras-

tructure failure on economic outcomes. While there is a larger literature on dose-response

functions that could be used to perform back-of-the-envelope calculations on the costs of de-

terioration, there is a need to inform policymakers so that they can plan their infrastructure

investments efficiently.

In addition to policy insights, this paper also offers lessons for applied microeconometri-

cians interested in leveraging machine learning to algorithmically classify subjects in panel

data. We found three implications of using a clustering algorithm to inform heterogeneous

treatment effects relative to population average treatment effects. First, when we restricted

the set of control road segments for treated road segments to be in the same cluster, our

point estimate decreased by 25%. Second, including cluster-specific controls in addition to

cluster specific treatment effects increases statistical power. We attribute this to reduced

sampling variation when leveling cluster level identifiers in control road segments. Third, es-

timating heterogeneous treatment effects explicitly along with heterogeneous control groups

shows significant heterogeneity in causal effects. Point estimates relative to the simple model

not leveraging k-means clustering varies from more than doubling of the causal effect to some

segments having no statistically significant impact. It stands to reason that policy makers in

this and other contexts could construct optimal policy which leverages large heterogeneous

impacts like these. Thus, the econometric insights enabled using k-means clustering could

have direct impacts for optimal policy construction in different settings. Much like for our

policy implications, we view using unsupervised learning algorithms to form clusters as a

starting point which is both a useful and scalable way to complement the existing expertise

20One example is trying to identifying the causal impact of a never before observed human threat to water
supplies.
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of applied econometricians working on important policy topics.
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Tables

Table 1: Age and material of DC water mains

Count Percentage

Total no. of water main breaks 278
(July 1, 2014–June 30, 2015)

Total no. main breaks with installation year recorded 268

Mean year 1921
Median year 1926
Before 1916 122 45.86
Before 1900 76 28.57
Before 1865 5 1.88

Total no. of water main breaks with material info 266

Cast iron 260 97.01
Ductile iron 5 1.87
PCCP-LCP 1 0.37

Steel 2 0.75

Notes: We analyze 278 water main breaks that are near roads for which we have
traffic information, which is a subset of the total number of water main breaks
that occurred in this time period. DC Water reported 515 total water main
breaks for this time period.

Table 2: Summary statistics for each cluster

Cluster No. Speed Speed Max. diff. NB SB EB WB IS US
ID segments (Mean) (SD) (MPH) (Pr.) (Pr.) (Pr.) (Pr.) (Pr.) (Pr.)

1 121 22.823 6.392 4.913 0.975 0 0 0 0.008 0.008
2 41 41.358 8.534 7.311 0 0 1 0 0.073 0
3 121 42.501 9.639 10.127 0 0.678 0 0.298 0.025 0.033
4 38 29.237 13.261 13.916 0.079 0.737 0.079 0.105 0.053 0.026
5 442 17.77 5.57 4.382 0 1 0 0 0 0
6 90 41.816 10.205 11.313 1 0 0 0 0.044 0.011
7 484 18.252 6.301 3.796 0 0 0 1 0 0.004
8 355 15.829 4.117 3.049 1 0 0.003 0 0 0.006
9 130 23.54 6.297 5.49 0 0 1 0 0 0
10 358 16.049 4.442 3.769 0 0 1 0 0 0

Notes: NB = northbound, SB = southbound, EB = eastbound, WB = westbound, IS = interstate, and
US = US highway. Max. diff. is the maximum difference in mean speeds during each hour of the day
relative to speeds at 5AM within each cluster
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Table 3: The effect of a water main break on aggregate
traffic speeds in Washington, DC

(1) (2) (3)
ln(speedit) ln(speedit) ln(speedit)

Any breakt 0.400*** 0.00762*** 0.00766***
(0.000361) (0.000369) (0.000369)

Breakit -0.0179***
(0.00326)

Spilloverit -0.00458***
(0.00136)

Observations 8,954,407 8,954,407 8,954,407
R-squared 0.0001 0.147 0.151
Number of segments 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES
Weekday FE NO YES YES
Month FE NO YES YES

Notes: All models control for road-segment fixed effects. All mod-
els adjusted for autocorrelation. Robust standard errors in paren-
theses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1

Table 4: Average treatment and cluster break effects

(1) (2) (3) (4)
ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit -0.0187*** -0.0174*** -0.0141*** -0.0142***
(0.00350) (0.00326) (0.00327) (0.00327)

Clusterit -0.00491*** -0.00489***
(0.000311) (0.000316)

Spilloverit -0.00055
(0.00138)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES

Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7826 0.7826
Baltagi-Wu LBI 0.6997 0.7847 0.7849 0.7849

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation.
Robust standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05, *
p<0.1
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Table 5: Cluster-specific treatment effects

(1) (2) (3) (4)
ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit × Cluster1 -0.0504*** -0.0393*** -0.0359** -0.0360**
(0.0154) (0.0143) (0.0143) (0.0143)

Breakit × Cluster2 0.00721 0.0134 0.0176 0.0176
(0.0402) (0.0375) (0.0375) (0.0375)

Breakit × Cluster3 0.00617 0.00818 0.0118 0.0118
(0.0269) (0.0251) (0.0251) (0.0251)

Breakit × Cluster4 -0.0539** -0.0370 -0.0340 -0.0340
(0.0253) (0.0236) (0.0236) (0.0236)

Breakit × Cluster5 -0.0138* -0.0125* -0.00956 -0.00958
(0.00730) (0.00681) (0.00681) (0.00681)

Breakit × Cluster6 0.0287 0.0353 0.0387 0.0387
(0.0287) (0.0269) (0.0269) (0.0269)

Breakit × Cluster7 -0.0230*** -0.0250*** -0.0219*** -0.0219***
(0.00729) (0.00678) (0.00678) (0.00678)

Breakit × Cluster8 -0.0181** -0.0138* -0.0106 -0.0106
(0.00811) (0.00756) (0.00757) (0.00757)

Breakit × Cluster9 -0.0311* -0.0220 -0.0184 -0.0184
(0.0172) (0.0161) (0.0161) (0.0161)

Breakit × Cluster10 -0.0122 -0.0161** -0.0125* -0.0126*
(0.00784) (0.00728) (0.00729) (0.00729)

Clusterit -0.00491*** -0.00489***
(0.000311) (0.000316)

Spilloverit -0.00055
(0.00138)

Observations 8,952,305 8,952,305 8,952,305 8,952,305
Number of segments 2,180 2,180 2,180 2,180
Fixed effects:
Hour FE NO YES YES YES
Wkday FE NO YES YES YES
Month FE NO YES YES YES

Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7826 0.7826
Baltagi-Wu LBI 0.6997 0.7847 0.7849 0.7849

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation.
Robust standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05, *
p<0.1
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Table 6: Cluster-specific treatment effects with cluster-specific
controls

(1) (2)
ln(speedit) ln(speedit)

Breakit × Cluster1 -0.0302** -0.0302**
(0.0144) (0.0144)

Breakit × Cluster2 -0.00160 -0.00165
(0.0380) (0.0380)

Breakit × Cluster3 0.00881 0.00878
(0.0252) (0.0252)

Breakit × Cluster4 -0.0434* -0.0434*
(0.0241) (0.0241)

Breakit × Cluster5 -0.00673 -0.00677
(0.00682) (0.00682)

Breakit × Cluster6 0.0298 0.0297
(0.0270) (0.0270)

Breakit × Cluster7 -0.0206*** -0.0207***
(0.00679) (0.00679)

Breakit × Cluster8 -0.0153** -0.0154**
(0.00758) (0.00758)

Breakit × Cluster9 -0.0268* -0.0269*
(0.0162) (0.0162)

Breakit × Cluster10 -0.0136* -0.0136*
(0.00730) (0.00730)

Breakit × Cluster Control1 -0.0128*** -0.0127***
(0.00184) (0.00184)

Breakit × Cluster Control2 0.0164** 0.0164**
(0.00676) (0.00676)

Breakit × Cluster Control3 -0.00108 -0.00104
(0.00296) (0.00296)

Breakit × Cluster Control4 0.00869 0.00880
(0.00698) (0.00698)

Breakit × Cluster Control5 -0.00933*** -0.00930***
(0.000611) (0.000613)

Breakit × Cluster Control6 0.00732* 0.00738*
(0.00379) (0.00379)

Breakit × Cluster Control7 -0.00686*** -0.00683***
(0.000559) (0.000561)

Breakit × Cluster Control8 0.00197*** 0.00202***
(0.000750) (0.000753)

Breakit × Cluster Control9 0.00607*** 0.00610***
(0.00184) (0.00184)

Breakit × Cluster Control10 -0.00352*** -0.00348***
(0.000680) (0.000682)

Spilloverit -0.00100
(0.00138)

Observations 8,952,305 8,952,305
Number of segments 2,180 2,180
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES

Modified Bhargava et al. Durbin-Watson 0.7827 0.7827
Baltagi-Wu LBI 0.7850 0.7850

Notes: All models control for road-segment fixed effects. All models ad-
justed for autocorrelation. Robust standard errors in parentheses clustered
at the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Average treatment and cluster break effects: by time of day

(1) (2) (3) (4) (5)
ln(speedit) ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit -0.0397*** -0.0182*** -0.0180** 0.0130 -0.0126*
(0.00863) (0.00703) (0.00727) (0.00799) (0.00695)

Clusterit -0.00828*** -0.0141*** -0.0321*** -0.0310*** -0.0340***
(0.000783) (0.000668) (0.000706) (0.000781) (0.000692)

Spilloverit -0.0190*** -0.00482 -0.00829*** 0.00458 -0.0194***
(0.00385) (0.00301) (0.00304) (0.00329) (0.00287)

Observations 1,680,016 1,680,019 1,673,519 1,677,910 1,673,462
Number of segments 2,182 2,182 2,182 2,182 2,182

Hours 7AM-10AM 10AM-1PM 1PM-4PM 4PM-7PM 7PM-10PM

Fixed effects:
Hour FE YES YES YES YES YES
Weekday FE YES YES YES YES YES
Month FE YES YES YES YES YES

Modified Bhargava et al.
Durbin-Watson 0.9390 0.9013 0.8963 0.8548 0.9037
Baltagi-Wu LBI 1.2807 1.2330 1.2734 1.2021 1.2063

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation.
Robust standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1

Table 8: Annual traffic time costs of Washington, DC, water main breaks

Method Coefficients table Rush hour Normal Total cost
car volume car volume

Average (without spillover) 5 n/a n/a $125,988
Average (with spillover) 5 n/a n/a $159,222
Average (with spillover) 8 n/a n/a $444,490
Time of day 9 2,500 2,500 $648,279
Time of day 9 4,000 1,500 $695,275

Notes: Assume 12,500 total volume per road/day and value of time of $18.80/hour. A total
of water main breaks occurred between July 1, 2014, and June 30, 2015. For the time-of-day,
non-uniform calculation, we find the time cost per break is roughly $1,350.
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Figures

Figure 1: Merged INRIX road segment and DC Water main break data from July 1, 2014,
through June 30, 2015
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Figure 2: Map of individual road segment clusters and water main breaks
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Figure 3: Simplified spatial treatment diagram
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Figure 4: Schematic of assumed street layout
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Online appendix – Not for publication

Table A.1: Difference between reported and comple-
tion time (in hours) by severity level

Severity Level Count 1Q Median 3Q Mean

1 2 201.6 269.5 337.5 269.5
2 7 329.9 382.5 542.4 423.5
3 41 99.3 189.4 363.1 338.3
4 79 22.6 46.3 96.5 110.0
5 144 9.5 12.8 19.7 22.5

Unreported 5 7.6 18.9 50.4 45.6

Table A.2: Summary statistics cluster-specific breaks (.15 miles)

Cluster No. Speed Speed Unique Segment Breaks Ave Segments-Breaks per break
ID segments (Mean) (SD)

1 121 22.823 6.392 961 4.56
2 41 41.358 8.534 146 2.55
3 121 42.501 9.639 431 1.26
4 38 29.237 13.261 277 2.02
5 442 17.77 5.57 2348 3.94
6 90 41.816 10.205 434 1.23
7 484 18.252 6.301 2394 3.88
8 355 15.829 4.117 1960 3.76
9 130 23.54 6.297 1217 1.48
10 358 16.049 4.442 2187 3.48

Notes: Table counts and shows the average number of impacts segments for a break that impacts at
least one segment in a cluster. Conditional on them being impacted, Cluster 1 is slightly more impacted
by main breaks than others accounting for the clusters being larger or smaller. For example cluster
1 averages 4.56 impacted segments per impacting break which is more than segment 7 which has four
times the road segments. However, in general the there is a rough ratio of 1 treated segment per 100
road segments conditional on any road segment within a cluster being treated.
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Table A.3: Average treatment and cluster break effects: reported time = start time
(maximum 1 week)

(1) (2) (3) (4)
ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit -0.0119*** -0.0170*** -0.0195*** -0.0199***
(0.00226) (0.00202) (0.00202) (0.00202)

Clusterit 0.00781*** 0.00807***
(0.000311) (0.000315)

Spilloverit -0.00462***
(0.00081)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES

Modified Bhargava et al. Durbin-Watson 0.6976 0.7824 0.7826 0.7826
Baltagi-Wu LBI 0.6997 0.7847 0.7849 0.7849

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation.
Robust standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1
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Table A.4: Average treatment and cluster break effects by break severity

(1) (2) (3) (4)
ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit × Severity1 -0.159*** -0.103*** -0.101*** -0.101***
(0.0289) (0.0267) (0.0267) (0.0267)

Breakit × Severity2 -0.0686*** -0.0683*** -0.0644*** -0.0644***
(0.0262) (0.0244) (0.0244) (0.0244)

Breakit × Severity3 -0.0541*** -0.0519*** -0.0488*** -0.0488***
(0.00830) (0.00773) (0.00774) (0.00774)

Breakit × Severity4 0.00485 0.00210 0.00531 0.00528
(0.00621) (0.00575) (0.00575) (0.00575)

Breakit × Severity5 -0.0162*** -0.0147*** -0.0114** -0.0114**
(0.00514) (0.00481) (0.00482) (0.00482)

Breakit × Severity Unreported 0.0607 0.0815** 0.0855** 0.0855**
(0.0381) (0.0355) (0.0355) (0.0355)

Clusterit (0.000311) (0.000316)
(0.000314) (0.000319)

Spilloverit -0.000561
(0.00138)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES

Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7826 0.7826
Baltagi-Wu LBI 0.6998 0.7847 0.7849 0.7849

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation.
Robust standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1

Table A.5: Placebo clusters and breaks

(1) (2) (3) (4)
ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit 0.00177 2.05e-06 -7.51e-05 -7.30e-05
(0.00654) (0.00617) (0.00619) (0.00619)

Clusterit 9.97e-05 9.70e-05
(0.000550) (0.000555)

Spilloverit 0.000133
(0.00369)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES

Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7824 0.7824
Baltagi-Wu LBI 0.6997 0.7846 0.7847 0.7847

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation.
Robust standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1
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Table A.6: k-medians clustering

(1) (2)
ln(speedit) ln(speedit)

Breakit -0.0130*** -0.0130***
(0.00327) (0.00327)

Clusterit -0.00644*** -0.00644***
(0.000339) (0.000345)

Spilloverit -0.000136
(0.00146)

Observations 8,954,407 8,954,407
Number of segments 2,182 2,182
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES

Modified Bhargava et al. Durbin-Watson 0.7826 0.7826
Baltagi-Wu LBI 0.7849 0.7849

Notes: All models control for road-segment fixed effects. All models ad-
justed for autocorrelation. Robust standard errors in parentheses clustered
at the road segment level. *** p<0.01, ** p<0.05, * p<0.1

Table A.7: Average treatment and cluster break effects, k=8

(1) (2)
ln(speedit) ln(speedit)

Breakit -0.0141*** -0.0141***
(0.00327) (0.00327)

Clusterit -0.00515*** -0.00515***
(0.000301) (0.000305)

Spilloverit -1.40e-05
(0.00135)

Observations 8,954,407 8,954,407
Number of segments 2,182 2,182
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES

Modified Bhargava et al. Durbin-Watson 0.7826 0.7826
Baltagi-Wu LBI 0.7849 0.7849

Notes: All models control for road-segment fixed effects. All models ad-
justed for autocorrelation. Robust standard errors in parentheses clustered
at the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Average treatment and cluster break effects, k=15

(1) (2)
ln(speedit) ln(speedit)

Breakit -0.0143*** -0.0144***
(0.00327) (0.00327)

Clusterit -0.00443*** -0.00442***
(0.000339) (0.000344)

Spilloverit -0.0024
(0.00144)

Observations 8,954,407 8,954,407
Number of segments 2,182 2,182
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES

Modified Bhargava et al. Durbin-Watson 0.7825 0.7825
Baltagi-Wu LBI 0.7848 0.7848

Notes: All models control for road-segment fixed effects. All models ad-
justed for autocorrelation. Robust standard errors in parentheses clustered
at the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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Table A.9: Cluster-specific treatment effects with cluster-specific controls by time

(1) (2) (3) (4) (5)
ln(speedit) ln(speedit) ln(speedit) ln(speedit) ln(speedit)

Breakit × Cluster1 -0.0488 -0.00579 -0.0508 0.0249 -0.0684**
(0.0405) (0.0290) (0.0323) (0.0312) (0.0298)

Breakit × Cluster2 -0.0230 -0.0344 -0.00681 -0.0740 0.0716
(0.121) (0.0710) (0.0864) (0.0896) (0.0802)

Breakit × Cluster3 0.126* 0.0589 0.0112 -0.0110 -0.0485
(0.0647) (0.0525) (0.0552) (0.0595) (0.0586)

Breakit × Cluster4 -0.0987 -0.0793 -0.108** 0.0251 -0.122***
(0.0722) (0.0617) (0.0538) (0.0469) (0.0453)

Breakit × Cluster5 -0.0312* -0.0305** -0.0214 0.0164 -0.0158
(0.0178) (0.0148) (0.0152) (0.0166) (0.0143)

Breakit × Cluster6 -0.0149 0.0709 0.00300 0.111* 0.0680
(0.0706) (0.0580) (0.0690) (0.0655) (0.0611)

Breakit × Cluster7 -0.0532*** 0.00501 -0.0376** -0.0181 -0.0273*
(0.0181) (0.0145) (0.0150) (0.0170) (0.0147)

Breakit × Cluster8 -0.0485** -0.0454*** -0.00767 0.0173 -0.000380
(0.0202) (0.0167) (0.0168) (0.0186) (0.0158)

Breakit × Cluster9 -0.0452 -0.00224 -0.00626 -0.0590 -0.0646**
(0.0395) (0.0348) (0.0365) (0.0406) (0.0322)

Breakit × Cluster10 -0.0467** -0.0283* -0.0193 0.0237 0.00594
(0.0189) (0.0155) (0.0160) (0.0185) (0.0161)

Breakit × Cluster Control1 0.00404 0.000199 0.0191*** 0.00617 -0.00197
(0.00459) (0.00398) (0.00433) (0.00416) (0.00405)

Breakit × Cluster Control2 0.200*** -0.0204* 0.175*** 0.0844*** 0.0391***
(0.0188) (0.0124) (0.0148) (0.0178) (0.0150)

Breakit × Cluster Control3 0.0176** 0.0336*** 0.0865*** 0.138*** 0.142***
(0.00848) (0.00567) (0.00577) (0.00698) (0.00741)

Breakit × Cluster Control4 -0.152*** -0.0538*** 0.100*** 0.00870 0.0927***
(0.0227) (0.0180) (0.0155) (0.0135) (0.0135)

Breakit × Cluster Control5 -0.00419*** -0.0193*** -0.0366*** -0.0371*** -0.0397***
(0.00148) (0.00131) (0.00134) (0.00141) (0.00127)

Breakit × Cluster Control6 0.129*** 0.0915*** 0.170*** 0.0458*** 0.0164*
(0.00857) (0.00784) (0.0101) (0.00927) (0.00875)

Breakit × Cluster Control7 -0.0131*** -0.00991*** -0.0290*** -0.0284*** -0.0335***
(0.00139) (0.00116) (0.00123) (0.00140) (0.00122)

Breakit × Cluster Control8 -0.00327* -0.0237*** -0.0473*** -0.0366*** -0.0416***
(0.00189) (0.00161) (0.00160) (0.00177) (0.00151)

Breakit × Cluster Control9 0.0302*** 0.0259*** 0.0392*** 0.0355*** 0.0340***
(0.00464) (0.00365) (0.00436) (0.00460) (0.00414)

Breakit × Cluster Control10 -0.0247*** -0.0212*** -0.0467*** -0.0497*** -0.0425***
(0.00171) (0.00147) (0.00148) (0.00171) (0.00152)

Spilloverit -0.0194*** -0.00472 -0.00917*** 0.00415 -0.0188***
(0.00385) (0.00301) (0.00304) (0.00329) (0.00287)

Observations 1,679,622 1,679,625 1,673,125 1,677,518 1,673,074
Number of segments 2,180 2,180 2,180 2,180 2,180
Hours 7AM-10AM 10AM-1PM 1PM-4PM 4PM-7PM 7PM-10PM
Fixed effects:
Hour FE YES YES YES YES YES
Weekday FE YES YES YES YES YES
Month FE YES YES YES YES YES
Modified Bhargava et al. Durbin-Watson 0.9392 0.9014 0.8965 0.8552 0.9040
Baltagi-Wu LBI 1.2808 1.2331 1.2736 1.2024 1.2066

Notes: All models control for road-segment fixed effects. All models adjusted for autocorrelation. Robust
standard errors in parentheses clustered at the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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Table A.10: Mean speed and data quality score by time of day

Time Mean speed SD speed Mean score SD score Observations

7A-10A 20.51 9.93 26.17 4.14 1,682,760
10A-1P 21.2 10.6 26.21 4 1,682,760
1P-4P 20.79 10.3 26.14 4 1,676,262
4P-7P 19.36 9.47 25.73 4.09 1,680,658
7P-10P 21.61 10.22 24.17 4.18 1,676,496

All 20.7 10.14 25.69 4.16 8,398,936
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A Pre-trends discussion

This subsection characterizes breaks at the cluster level. It also assesses the quality of the
clustering exercise in satisfying the pre-trends assumption at the root of our diff-in-diff design.

To show pre-trends within a cluster of treated and untreated segments within a cluster we
plot hourly speeds by treatment status the day before a break impacts a cluster. Figure A.2
shows “day before” pre-trend results by cluster with 95% confidence intervals. Blue is treated
and red is control.

As expected, clusters with the poorest match in Figure A.2, clusters 3, 4, and 6 have the
least number of road segments and the smallest number of treated “segment-days”. Cluster
9 has a similarly small set of road segments. Part of this is by design: Clusters 3, 4, 6 and 9
have relatively fast speeds indicating they are main roads. This is borne out in Figure 2. As
a result, the pre-trends are worst where we expect them to be worse.

For the remaining clusters, accounting for the vast majority of road segments, the pre-
trends looks quite similar for treated and control segments. Clusters 2 and 10 lie mostly
on top of each other. Clusters 1, 5, 7, and 8 look exactly like level shifts. That said, the
level differences are very small in percentage terms, generally around 10%. Still, we estimate
our main specifications with road segment fixed effects to eliminate level differences between
treated and control segments. We take Figure A.2 as strong evidence that the pre-trends
assumption of the difference-in-differences research design is satisfied at the cluster level. In
the subsequent analysis, we’ll see that these pre-trend matching clusters, 1, 7, 8 and 10 is
where we estimate the most important impacts.
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Figure A.2: Each line summarizes average hourly speeds by treated road segments (blue) and
control road segments (red) in the day before a main break impacts a subset of segments
within a cluster. Blue and red hues show 95% confidence intervals for hourly speeds.
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